大多数现有的插槽填充模型倾向于记住实体的固有模式和培训数据中相应的上下文。但是,这些模型在暴露于口语语言扰动或实践中的变化时会导致系统故障或不良输出。我们提出了一种扰动的语义结构意识转移方法,用于训练扰动插槽填充模型。具体而言,我们介绍了两种基于传销的培训策略,以分别从无监督的语言扰动语料库中分别学习上下文语义结构和单词分布。然后,我们将从上游训练过程学到的语义知识转移到原始样本中,并通过一致性处理过滤生成的数据。这些程序旨在增强老虎机填充模型的鲁棒性。实验结果表明,我们的方法始终优于先前的基本方法,并获得强有力的概括,同时阻止模型记住实体和环境的固有模式。
translated by 谷歌翻译
高信心重叠的预测和准确的对应关系对于以部分到派对方式对齐成对点云至关重要。但是,重叠区域和非重叠区域之间存在固有的不确定性,这些区域一直被忽略并显着影响注册绩效。除了当前的智慧之外,我们提出了一种新颖的不确定性意识到的重叠预测网络,称为Utopic,以解决模棱两可的重叠预测问题。据我们所知,这是第一个明确引入重叠不确定性以指向云注册的人。此外,我们诱导特征提取器通过完成解码器隐式感知形状知识,并为变压器提供几何关系嵌入,以获得转换 - 不变性的几何形状感知特征表示。凭借更可靠的重叠得分和更精确的密度对应关系的优点,即使对于有限的重叠区域的输入,乌托邦也可以实现稳定而准确的注册结果。关于合成和实际基准的广泛定量和定性实验证明了我们的方法优于最先进的方法。代码可从https://github.com/zhileichen99/utopic获得。
translated by 谷歌翻译
点云的语义分割,旨在为每个点分配语义类别,对3D场景的理解至关重要。尽管近年来取得了重大进展,但大多数现有方法仍然遭受对象级别的错误分类或边界级别的歧义。在本文中,我们通过深入探索被称为Geosegnet的点云的几何形状来提出一个强大的语义分割网络。我们的Geosegnet由一个基于多几何的编码器和边界引导的解码器组成。在编码器中,我们从多几何的角度开发了一个新的残差几何模块,以提取对象级特征。在解码器中,我们引入了一个对比边界学习模块,以增强边界点的几何表示。从几何编码器模型中受益,我们的GEOSEGNET可以在使两个或多个对象的相交(边界)清晰地确定对象的分割。从总体分割精度和对象边界清除方面,实验显示了我们方法对竞争对手的明显改善。代码可在https://github.com/chen-yuiyui/geosegnet上找到。
translated by 谷歌翻译
当使用任意异质数据流提供时,我们如何收集最有用的标签来学习模型选择策略?在本文中,我们将此任务制定为一个在线上下文的活动模型选择问题,在每个回合中,学习者在上下文中都会收到一个未标记的数据点以及上下文。目的是在任何给定上下文中输出最佳模型,而不会获得过多的标签。特别是,我们专注于选择预训练的分类器的任务,并提出一种上下文活动模型选择算法(CAM),该算法依赖于在给定策略类别上定义的新型不确定性采样查询标准用于自适应模型选择。与先前的ART相比,我们的算法不假定全球最佳模型。我们提供严格的理论分析,以实现对抗和随机设置下的遗憾和查询复杂性。我们对几个基准分类数据集的实验证明了该算法在遗憾和查询复杂性方面的有效性。值得注意的是,与CIFAR10上最佳的在线型号选择基线相比,CAMS的标签成本少于标签成本的10%。
translated by 谷歌翻译
该技术报告提出了一种有效的自动驾驶运动预测方法。我们开发了一种基于变压器的方法,用于输入编码和轨迹预测。此外,我们提出了时间流动头来增强轨迹编码。最后,使用了有效的K均值集合方法。使用我们的变压器网络和集合方法,我们以1.90的最新Brier-Minfde得分赢得了Argoverse 2 Motion预测挑战的第一名。
translated by 谷歌翻译
3D点云的卷积经过广泛研究,但在几何深度学习中却远非完美。卷积的传统智慧在3D点之间表现出特征对应关系,这是对差的独特特征学习的内在限制。在本文中,我们提出了自适应图卷积(AGCONV),以供点云分析的广泛应用。 AGCONV根据其动态学习的功能生成自适应核。与使用固定/各向同性核的解决方案相比,AGCONV提高了点云卷积的灵活性,有效,精确地捕获了不同语义部位的点之间的不同关系。与流行的注意力体重方案不同,AGCONV实现了卷积操作内部的适应性,而不是简单地将不同的权重分配给相邻点。广泛的评估清楚地表明,我们的方法优于各种基准数据集中的点云分类和分割的最新方法。同时,AGCONV可以灵活地采用更多的点云分析方法来提高其性能。为了验证其灵活性和有效性,我们探索了基于AGCONV的完成,DeNoing,Upsmpling,注册和圆圈提取的范式,它们与竞争对手相当甚至优越。我们的代码可在https://github.com/hrzhou2/adaptconv-master上找到。
translated by 谷歌翻译
基于深度学习的模型占主导地位的生产推荐系统的当前景观。此外,近年来目睹了模型规模的指数增长 - 从谷歌的2016年模型,最新的Facebook的型号有10亿个参数,具有12万亿参数。型号容量的每次跳跃都有显着的质量增强,这使我们相信100万亿参数的时代即将来临。然而,即使在工业规模数据中心内,这些模型的培训也在挑战。这种困难是从训练计算的惊人的异质性继承 - 模型的嵌入层可以包括总模型尺寸的99.99%,这是极其内存密集的;虽然其余的神经网络越来越多地计算密集型。为支持培训此类巨大模式,迫切需要有效的分布式培训系统。在本文中,我们通过仔细共同设计优化算法和分布式系统架构来解决这一挑战。具体而言,为了确保培训效率和训练精度,我们设计一种新型混合训练算法,其中嵌入层和密集的神经网络由不同的同步机制处理;然后,我们构建一个名为Persia的系统(短暂的并行推荐培训系统,其中包含混合加速),以支持这种混合培训算法。理论上的示范和实证研究均达到100万亿参数,以证明了波斯的系统设计和实施。我们将Pensia公开使用(在https://github.com/persiamml/persia),以便任何人都能够以100万亿参数的规模轻松培训推荐模型。
translated by 谷歌翻译
最近在文献中显示,在线学习实验的样本平均值在用于估计平均奖励时偏置。为了纠正偏差,违规评估方法,包括重要性采样和双倍稳健的估算,通常计算条件倾向分数,这对于UCB等非随机策略而言。本文提供了使用Bootstrap衰减样本的过程,这不需要对奖励分配的知识并应用于任何自适应策略。数值实验证明了受欢迎的多武装强盗算法产生的样本的有效偏差,例如探索 - 然后提交(ETC),UCB,Thompson采样(TS)和$ \ epsilon $ -Greedy(例如)。我们分析并提供了ETC算法下的程序的理论理由,包括真实和引导世界中偏差衰减率的渐近融合。
translated by 谷歌翻译
我们研究了基于模型的未识别的强化学习,用于部分可观察到的马尔可夫决策过程(POMDPS)。我们认为的Oracle是POMDP的最佳政策,其在无限视野的平均奖励方面具有已知环境。我们为此问题提出了一种学习算法,基于隐藏的马尔可夫模型的光谱方法估计,POMDPS中的信念错误控制以及在线学习的上等信心结合方法。我们为提出的学习算法建立了$ o(t^{2/3} \ sqrt {\ log t})$的后悔界限,其中$ t $是学习范围。据我们所知,这是第一种算法,这是对我们学习普通POMDP的甲骨文的统一性后悔。
translated by 谷歌翻译
过去一年目睹了将变压器模块应用于视力问题的快速发展。虽然一些研究人员已经证明,基于变压器的模型享有有利的拟合数据能力,但仍然越来越多的证据,表明这些模型尤其在训练数据受到限制时遭受过度拟合。本文通过执行逐步操作来提供实证研究,逐步运输基于变压器的模型到基于卷积的模型。我们在过渡过程中获得的结果为改善视觉识别提供了有用的消息。基于这些观察,我们提出了一个名为VIRFormer的新架构,该体系结构从“视觉友好的变压器”中缩写。具有相同的计算复杂度,在想象集分类精度方面,VISFormer占据了基于变压器的基于卷积的模型,并且当模型复杂性较低或训练集较小时,优势变得更加重要。代码可在https://github.com/danczs/visformer中找到。
translated by 谷歌翻译